Ver Mensaje Individual
Antiguo , 16:50:14   #1
Wave Curiosidades del LCD Calificación: de 5,00

Los mejores licores
Los dispositivos electroópticos son el elemento fundamental en la construcción de las pantallas de cristal líquido (LCD). El grado de complejidad de su construcción aumenta con la sofisticación del producto final en el que se emplean, desde la simplicidad de la calculadora, hasta la última generación de TFTs del mercado, pero los principios básicos de su funcionamiento son los mismos.







El dispositivo electroóptico se construye, de forma simplificada, tomando dos láminas de vidrio en las que se realizan unas hendiduras de tamaño similar a las moléculas del cristal líquido nemático que se introduce entre ambas. Estas dos láminas al colocarse de forma perpendicular originan una orientación molecular preferente y la aparición de un eje óptico helicoidal dentro del material (Fig. 1). Dicho eje óptico es análogo al que encontramos en las mesofases colestéricas o nemáticas quirales. Por último, tras el segundo polarizador, se coloca un espejo que reflejará la luz que atraviesa el dispositivo llegando a los ojos del espectador.

La aplicación de un campo eléctrico sobre la célula de cristal líquido va a dar lugar a las dos posiciones off / on necesarias para el funcionamiento de las pantallas de cristal líquido. Si el campo eléctrico está desconectado las moléculas de cristal líquido mantienen su orientación preferente y dejan que la luz polarizada (aquella cuyas vibraciones están restringidas a una única dirección en el espacio) atraviese la célula reflejándose en el espejo y dando lugar a una celda transparente (Fig. 2a). Sin embargo, al conectar un campo eléctrico en el dispositivo las moléculas giran y pierden su orientación para colocarse paralelas al campo eléctrico aplicado impidiendo que la luz polarizada atraviese el segundo polarizador, y por tanto no se podrá reflejar en el espejo originando una célula negra (Fig. 2b).




El siguiente paso en la construcción de una pantalla LCD consiste en agregar a cada una de las células de cristal líquido, como las que se muestran en la figura 2, unos filtros de los colores básicos rojo, verde y azul. Cada una de las células junto con el filtro del color correspondiente se denomina subpíxel y a su vez el subpíxel rojo, el subpíxel verde y el subpíxel azul forman lo que se conoce con el nombre de píxel.


Dependiendo de la intensidad del campo eléctrico aplicado sobre la célula se pueden alcanzar distintos niveles de transparencia en los subpíxeles (se modula la cantidad de luz que atraviesa la célula). Si el valor del campo es máximo las moléculas se alinearán totalmente y la luz no podrá atravesar el segundo polarizador y el subpíxel estará desactivado. Si el campo es nulo, o de un valor mínimo, toda la luz atraviesa el segundo polarizador y el subpíxel será brillante. Entre los dos valores extremos de campo eléctrico se obtendrán las diferentes tonalidades de rojo, verde y azul. Por lo tanto, modificando el voltaje podremos obtener distintas tonalidades en los subpíxeles verdes, en los azules y en los rojos.



Debido al minúsculo tamaño de los subpíxeles el ojo humano únicamente puede percibir un punto, es decir, un píxel cuyo color vendrá dado por la mezcla de los colores de los tres subpíxeles (Fig. 3).





En resumen, si la luz polarizada atraviesa la célula de cristal líquido, por ejemplo, con el filtro rojo el subpíxel rojo estará activo y el ojo observará la tonalidad correspondiente a la cantidad de luz que lo atraviesa. Si la luz polarizada no puede atravesar el segundo polarizador, el subpíxel estará desactivado y el color resultante del píxel que verá nuestro ojo no contendrá al color rojo tal como se observa en la

figura






La imagen se forma en la pantalla gracias a la presencia de una multitud de minúsculas células de cristal líquido (tres por cada píxel, Fig. 4). El número de píxeles que contiene una pantalla dependerá de su tamaño y de la resolución final (Fig.5).





Las primeras pantallas de cristal líquido que se comercializaron fueron las llamadas DSTN (Super Twisted Nematic Display) o también denominadas de MATRIZ PASIVA utilizadas hasta hace unos años en los ordenadores portátiles. El sistema de control está formado por una lámina de vidrio cubierta con un óxido de metal transparente el cual opera como un sistema enrejado de filas y columnas de electrodos a través de los que pasa la corriente necesaria para activar y desactivar los píxeles de la pantalla. El sistema de control de los monitores de matriz pasiva tiene un problema de velocidad de respuesta, ésta es muy lenta cuando los cambios en la pantalla o el movimiento de ratón son muy rápidos produciendo borrones o estelas en la pantalla.


Debido a estos problemas, muchas compañías comenzaron a desarrollar la tecnología TFT (Thin Film Transistor) o MATRIZ ACTIVA, en este tipo de pantallas se incorpora una lámina extra de transistores conectados al panel de cristal líquido por lo que cada píxel está controlado de forma independiente eliminando los problemas de sombras y respuesta lenta de los DSTN y mejorando a un nivel muy elevado todas las variables, entre ellas el ángulo de visión.


La tecnología LCD - TFT ha avanzado sustancialmente en los últimos años, actualmente podemos encontrar en el mercado diferentes tipos de pantallas TFT (Fig. 5) según su utilización: TFT - VA (Vertically-Aligned) que se utiliza en televisores, TFT - TN (Twisted Nematic) utilizadas en móviles y PDAs y por último las TFT - IPS (In Plane Switching) que se utilizan en la tecnología informática.





Las pantallas LCD - TFT proporcionan al usuario numerosas ventajas como son: menor tamaño (pantallas más delgadas), menor consumo o eliminación del parpadeo. Por ejemplo en un monitor CRT (Tubo de Rayos Catódicos) la imagen se crea mediante barridos horizontales y verticales en la pantalla de fósforo, la pantalla se refresca o re - dibuja un número de veces determinado por segundo, mientras que en el monitor LCD se aplica un campo eléctrico continuo y los píxeles se encienden o apagan de forma independiente. Esta diferencia de funcionamiento supone una reducción de problemas visuales ya que se elimina el parpadeo de las imágenes que causan sobreesfuerzo y fatiga en los ojos y sobre todo un aumento de la calidad de las imágenes, las pantallas poseen una superficie plana por lo que las distorsiones en los extremos se eliminan.


Comentarios Facebook

__________________

Pentax K3 + Tamron 17-50mm f/2.8 - Pentax-f 50mm f/1.7 - Pentax DA 55-300mm - Pentax-fa 100mm Macro f/2.8

Flickr - 500px - Facebook
MiL0 no está en línea   Responder Citando

compartir
                 
remocion sep Gold sep Silver sep Donar

marcaNo Calculado   #1.5
SponSor

avatar
 
Me Gusta denunciando
Estadisticas
Mensajes: 898.814
Me Gusta Recibidos: 75415
Me Gustado Dados: 62988
Fecha de Ingreso: 02 jun 2006
Reputacion
Puntos: 1574370
Ayudante de Santa está en el buen caminoAyudante de Santa está en el buen caminoAyudante de Santa está en el buen caminoAyudante de Santa está en el buen caminoAyudante de Santa está en el buen caminoAyudante de Santa está en el buen caminoAyudante de Santa está en el buen caminoAyudante de Santa está en el buen caminoAyudante de Santa está en el buen caminoAyudante de Santa está en el buen caminoAyudante de Santa está en el buen caminoAyudante de Santa está en el buen caminoAyudante de Santa está en el buen caminoAyudante de Santa está en el buen camino
emoticon Re: Curiosidades del LCD

 
Los mejores licores
 
   
   
_______________________________________________
Publicidad :)
conectado
 
Page generated in 0,07660 seconds with 12 queries